Serveur d'exploration sur la Covid et les espaces publics

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications.

Identifieur interne : 000092 ( Main/Exploration ); précédent : 000091; suivant : 000093

Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications.

Auteurs : G. Buonanno [Australie] ; L. Morawska [Australie] ; L. Stabile [Italie]

Source :

RBID : pubmed:32927282

Descripteurs français

English descriptors

Abstract

Airborne transmission is a recognized pathway of contagion; however, it is rarely quantitatively evaluated. The numerous outbreaks that have occurred during the SARS-CoV-2 pandemic are putting a demand on researchers to develop approaches capable of both predicting contagion in closed environments (predictive assessment) and analyzing previous infections (retrospective assessment). This study presents a novel approach for quantitative assessment of the individual infection risk of susceptible subjects exposed in indoor microenvironments in the presence of an asymptomatic infected SARS-CoV-2 subject. The application of a Monte Carlo method allowed the risk for an exposed healthy subject to be evaluated or, starting from an acceptable risk, the maximum exposure time. We applied the proposed approach to four distinct scenarios for a prospective assessment, highlighting that, in order to guarantee an acceptable risk of 10-3 for exposed subjects in naturally ventilated indoor environments, the exposure time could be well below one hour. Such maximum exposure time clearly depends on the viral load emission of the infected subject and on the exposure conditions; thus, longer exposure times were estimated for mechanically ventilated indoor environments and lower viral load emissions. The proposed approach was used for retrospective assessment of documented outbreaks in a restaurant in Guangzhou (China) and at a choir rehearsal in Mount Vernon (USA), showing that, in both cases, the high attack rate values can be justified only assuming the airborne transmission as the main route of contagion. Moreover, we show that such outbreaks are not caused by the rare presence of a superspreader, but can be likely explained by the co-existence of conditions, including emission and exposure parameters, leading to a highly probable event, which can be defined as a "superspreading event".

DOI: 10.1016/j.envint.2020.106112
PubMed: 32927282
PubMed Central: PMC7474922


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications.</title>
<author>
<name sortKey="Buonanno, G" sort="Buonanno, G" uniqKey="Buonanno G" first="G" last="Buonanno">G. Buonanno</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy; International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Qld, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy; International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Qld</wicri:regionArea>
<wicri:noRegion>Qld</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Morawska, L" sort="Morawska, L" uniqKey="Morawska L" first="L" last="Morawska">L. Morawska</name>
<affiliation wicri:level="1">
<nlm:affiliation>International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Qld, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Qld</wicri:regionArea>
<wicri:noRegion>Qld</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stabile, L" sort="Stabile, L" uniqKey="Stabile L" first="L" last="Stabile">L. Stabile</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy. Electronic address: l.stabile@unicas.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR</wicri:regionArea>
<wicri:noRegion>FR</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32927282</idno>
<idno type="pmid">32927282</idno>
<idno type="doi">10.1016/j.envint.2020.106112</idno>
<idno type="pmc">PMC7474922</idno>
<idno type="wicri:Area/Main/Corpus">000112</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000112</idno>
<idno type="wicri:Area/Main/Curation">000112</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000112</idno>
<idno type="wicri:Area/Main/Exploration">000112</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications.</title>
<author>
<name sortKey="Buonanno, G" sort="Buonanno, G" uniqKey="Buonanno G" first="G" last="Buonanno">G. Buonanno</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy; International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Qld, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy; International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Qld</wicri:regionArea>
<wicri:noRegion>Qld</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Morawska, L" sort="Morawska, L" uniqKey="Morawska L" first="L" last="Morawska">L. Morawska</name>
<affiliation wicri:level="1">
<nlm:affiliation>International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Qld, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Qld</wicri:regionArea>
<wicri:noRegion>Qld</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stabile, L" sort="Stabile, L" uniqKey="Stabile L" first="L" last="Stabile">L. Stabile</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy. Electronic address: l.stabile@unicas.it.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR</wicri:regionArea>
<wicri:noRegion>FR</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Environment international</title>
<idno type="eISSN">1873-6750</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aerosols (MeSH)</term>
<term>Air Pollution, Indoor (MeSH)</term>
<term>Betacoronavirus (MeSH)</term>
<term>COVID-19 (MeSH)</term>
<term>China (MeSH)</term>
<term>Coronavirus (MeSH)</term>
<term>Coronavirus Infections (epidemiology)</term>
<term>Coronavirus Infections (prevention & control)</term>
<term>Coronavirus Infections (transmission)</term>
<term>Humans (MeSH)</term>
<term>Pandemics (MeSH)</term>
<term>Pneumonia, Viral (epidemiology)</term>
<term>Pneumonia, Viral (prevention & control)</term>
<term>Pneumonia, Viral (transmission)</term>
<term>Prospective Studies (MeSH)</term>
<term>Retrospective Studies (MeSH)</term>
<term>Risk Assessment (methods)</term>
<term>SARS-CoV-2 (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Appréciation des risques (méthodes)</term>
<term>Aérosols (MeSH)</term>
<term>Betacoronavirus (MeSH)</term>
<term>Chine (MeSH)</term>
<term>Coronavirus (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Infections à coronavirus (prévention et contrôle)</term>
<term>Infections à coronavirus (transmission)</term>
<term>Infections à coronavirus (épidémiologie)</term>
<term>Pandémies (MeSH)</term>
<term>Pneumopathie virale (prévention et contrôle)</term>
<term>Pneumopathie virale (transmission)</term>
<term>Pneumopathie virale (épidémiologie)</term>
<term>Pollution de l'air intérieur (MeSH)</term>
<term>Études prospectives (MeSH)</term>
<term>Études rétrospectives (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Aerosols</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>China</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Risk Assessment</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Appréciation des risques</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="prévention et contrôle" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Air Pollution, Indoor</term>
<term>Betacoronavirus</term>
<term>COVID-19</term>
<term>Coronavirus</term>
<term>Humans</term>
<term>Pandemics</term>
<term>Prospective Studies</term>
<term>Retrospective Studies</term>
<term>SARS-CoV-2</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Aérosols</term>
<term>Betacoronavirus</term>
<term>Chine</term>
<term>Coronavirus</term>
<term>Humains</term>
<term>Pandémies</term>
<term>Pollution de l'air intérieur</term>
<term>Études prospectives</term>
<term>Études rétrospectives</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>République populaire de Chine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Airborne transmission is a recognized pathway of contagion; however, it is rarely quantitatively evaluated. The numerous outbreaks that have occurred during the SARS-CoV-2 pandemic are putting a demand on researchers to develop approaches capable of both predicting contagion in closed environments (predictive assessment) and analyzing previous infections (retrospective assessment). This study presents a novel approach for quantitative assessment of the individual infection risk of susceptible subjects exposed in indoor microenvironments in the presence of an asymptomatic infected SARS-CoV-2 subject. The application of a Monte Carlo method allowed the risk for an exposed healthy subject to be evaluated or, starting from an acceptable risk, the maximum exposure time. We applied the proposed approach to four distinct scenarios for a prospective assessment, highlighting that, in order to guarantee an acceptable risk of 10
<sup>-3</sup>
for exposed subjects in naturally ventilated indoor environments, the exposure time could be well below one hour. Such maximum exposure time clearly depends on the viral load emission of the infected subject and on the exposure conditions; thus, longer exposure times were estimated for mechanically ventilated indoor environments and lower viral load emissions. The proposed approach was used for retrospective assessment of documented outbreaks in a restaurant in Guangzhou (China) and at a choir rehearsal in Mount Vernon (USA), showing that, in both cases, the high attack rate values can be justified only assuming the airborne transmission as the main route of contagion. Moreover, we show that such outbreaks are not caused by the rare presence of a superspreader, but can be likely explained by the co-existence of conditions, including emission and exposure parameters, leading to a highly probable event, which can be defined as a "superspreading event".</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">32927282</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-6750</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>145</Volume>
<PubDate>
<Year>2020</Year>
<Month>12</Month>
</PubDate>
</JournalIssue>
<Title>Environment international</Title>
<ISOAbbreviation>Environ Int</ISOAbbreviation>
</Journal>
<ArticleTitle>Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications.</ArticleTitle>
<Pagination>
<MedlinePgn>106112</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0160-4120(20)32067-5</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.envint.2020.106112</ELocationID>
<Abstract>
<AbstractText>Airborne transmission is a recognized pathway of contagion; however, it is rarely quantitatively evaluated. The numerous outbreaks that have occurred during the SARS-CoV-2 pandemic are putting a demand on researchers to develop approaches capable of both predicting contagion in closed environments (predictive assessment) and analyzing previous infections (retrospective assessment). This study presents a novel approach for quantitative assessment of the individual infection risk of susceptible subjects exposed in indoor microenvironments in the presence of an asymptomatic infected SARS-CoV-2 subject. The application of a Monte Carlo method allowed the risk for an exposed healthy subject to be evaluated or, starting from an acceptable risk, the maximum exposure time. We applied the proposed approach to four distinct scenarios for a prospective assessment, highlighting that, in order to guarantee an acceptable risk of 10
<sup>-3</sup>
for exposed subjects in naturally ventilated indoor environments, the exposure time could be well below one hour. Such maximum exposure time clearly depends on the viral load emission of the infected subject and on the exposure conditions; thus, longer exposure times were estimated for mechanically ventilated indoor environments and lower viral load emissions. The proposed approach was used for retrospective assessment of documented outbreaks in a restaurant in Guangzhou (China) and at a choir rehearsal in Mount Vernon (USA), showing that, in both cases, the high attack rate values can be justified only assuming the airborne transmission as the main route of contagion. Moreover, we show that such outbreaks are not caused by the rare presence of a superspreader, but can be likely explained by the co-existence of conditions, including emission and exposure parameters, leading to a highly probable event, which can be defined as a "superspreading event".</AbstractText>
<CopyrightInformation>Copyright © 2020. Published by Elsevier Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Buonanno</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy; International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Qld, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Morawska</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Qld, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stabile</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy. Electronic address: l.stabile@unicas.it.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Environ Int</MedlineTA>
<NlmUniqueID>7807270</NlmUniqueID>
<ISSNLinking>0160-4120</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000336">Aerosols</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Disease" UI="C000657245">COVID-19</SupplMeshName>
<SupplMeshName Type="Organism" UI="C000656484">severe acute respiratory syndrome coronavirus 2</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000336" MajorTopicYN="N">Aerosols</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016902" MajorTopicYN="N">Air Pollution, Indoor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="Y">Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="Y">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="Y">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011446" MajorTopicYN="N">Prospective Studies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012189" MajorTopicYN="N">Retrospective Studies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018570" MajorTopicYN="N">Risk Assessment</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Coronavirus</Keyword>
<Keyword MajorTopicYN="Y">Indoor</Keyword>
<Keyword MajorTopicYN="Y">SARS-CoV-2 (COVID-19) assessment</Keyword>
<Keyword MajorTopicYN="Y">Ventilation</Keyword>
<Keyword MajorTopicYN="Y">Virus airborne transmission</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>07</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>20</Hour>
<Minute>17</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32927282</ArticleId>
<ArticleId IdType="pii">S0160-4120(20)32067-5</ArticleId>
<ArticleId IdType="doi">10.1016/j.envint.2020.106112</ArticleId>
<ArticleId IdType="pmc">PMC7474922</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Italie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Buonanno, G" sort="Buonanno, G" uniqKey="Buonanno G" first="G" last="Buonanno">G. Buonanno</name>
</noRegion>
<name sortKey="Morawska, L" sort="Morawska, L" uniqKey="Morawska L" first="L" last="Morawska">L. Morawska</name>
</country>
<country name="Italie">
<noRegion>
<name sortKey="Stabile, L" sort="Stabile, L" uniqKey="Stabile L" first="L" last="Stabile">L. Stabile</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Wicri/explor/CovidPublicV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000092 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000092 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Wicri
   |area=    CovidPublicV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32927282
   |texte=   Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32927282" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidPublicV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Dec 15 17:23:28 2020. Site generation: Wed Jan 27 15:07:40 2021